If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+7x-38=0
a = 12; b = 7; c = -38;
Δ = b2-4ac
Δ = 72-4·12·(-38)
Δ = 1873
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{1873}}{2*12}=\frac{-7-\sqrt{1873}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{1873}}{2*12}=\frac{-7+\sqrt{1873}}{24} $
| -5a-22=7(-5a-7)-3 | | x/12+1/3=1.12 | | -4p+1=77 | | (14x+4)°=55° | | -19-3x-11+2x=2 | | -12=8b–5b | | 14x+4=360 | | -122=-10+8r | | -6(2y-2)+2y=4(y+4) | | -6(v+4)=-36 | | 137=108+x | | 90=9x+3 | | 37=-3-2a | | -5=p–9/4 | | 4(v+1)-v=3(v+1)+3 | | x+7=-3x-29 | | 6y-7/4=-3/4y-1/3 | | 4(u-1)-4=-2(-6u+7)-4u | | 3(2x-4)+12x=30 | | 2(u+1)+8=9(2u+4) | | 42=-6r-18 | | x+23=5x-1 | | 42=-6r–18 | | -2(x-4)=4x-14 | | 4x-3-5x+11=15x+16 | | y=−4 | | 4w-8=-56 | | 3(x-2)=5x=9-4(x=3) | | x*6=186 | | -4w–8=-56 | | 1/3*2x+9)=2/3x | | 4x-18=-3x-8 |